Paving Hessenberg Varieties by Affines

نویسنده

  • JULIANNA S. TYMOCZKO
چکیده

Regular nilpotent Hessenberg varieties form a family of subvarieties of the flag variety which arise in the study of quantum cohomology, geometric representation theory, and numerical analysis. In this paper we construct a paving by affines of regular nilpotent Hessenberg varieties for all classical types. This paving is in fact the intersection of a particular Bruhat decomposition with the Hessenberg variety. The nonempty cells of this paving and their dimensions can be identified by a combinatorial condition on roots. We use this paving to prove these Hessenberg varieties have no odd-dimensional homology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposing Nilpotent Hessenberg Varieties over Classical Groups

Hessenberg varieties are a family of subvarieties of the flag variety, including the Springer fibers, the Peterson variety, and the entire flag variety itself. The seminal example arises from numerical analysis and consists, for a fixed linear operator M , of the full flags V1 ( V2 . . . ( Vn in GLn with MVi ⊆ Vi+1 for all i. In this paper, I show that all nilpotent Hessenberg varieties in type...

متن کامل

Purity of Equivalued Affine Springer Fibers

The affine Springer fiber corresponding to a regular integral equivalued semisimple element admits a paving by vector bundles over Hessenberg varieties and hence its homology is “pure”.

متن کامل

Hessenberg Varieties Are Not Pure Dimensional

We study a family of subvarieties of the flag variety defined by certain linear conditions, called Hessenberg varieties. We compare them to Schubert varieties. We prove that some Schubert varieties can be realized as Hessenberg varieties and vice versa. Our proof explicitly identifies these Schubert varieties by their permutation and computes their dimension. We use this to answer an open quest...

متن کامل

Imposing Linear Conditions on Flag Varieties

Abstract. We study subvarieties of the flag variety defined by certain linear conditions. These subvarieties are called Hessenberg varieties and arise naturally in applications including geometric representation theory, number theory, and numerical analysis. We describe completely the homology of Hessenberg varieties over GLn(C) and show that they have no odd-dimensional homology. We provide an...

متن کامل

Linear Conditions Imposed on Flag Varieties

We study subvarieties of the flag variety called Hessenberg varieties, defined by certain linear conditions. These subvarieties arise naturally in applications including geometric representation theory, number theory, and numerical analysis. We describe completely the homology of Hessenberg varieties over GLn(C) and show that they have no odd-dimensional homology. We provide an explicit geometr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004